Skip to content

Bulk import to D1 using REST API

Last reviewed: 3 months ago

In this tutorial, you will learn how to import a database into D1 using the REST API.

Prerequisites

  1. Sign up for a Cloudflare account.
  2. Install Node.js.

Node.js version manager

Use a Node version manager like Volta or nvm to avoid permission issues and change Node.js versions. Wrangler, discussed later in this guide, requires a Node version of 16.17.0 or later.

1. Create a D1 API token

To use REST APIs, you need to generate an API token to authenticate your API requests. You can do this through the Cloudflare dashboard.

  1. Log in to the Cloudflare dashboard and select your account.
  2. Select your user icon, then select My Profile.
  3. Go to API Tokens.
  4. Under API Tokens, select Create Token.
  5. Scroll to Custom token > Create custom token, then select Get started.
  6. Under Token name, enter a descriptive token name. For example, Name-D1-Import-API-Token.
  7. Under Permissions:
    • Select Account.
    • Select D1.
    • Select Edit.
  8. Select Continue to summary.
  9. Select Create token.
  10. Copy the API token and save it in a secure file.
  • Refer to Create API token for more information on creating API tokens through the Cloudflare dashboard.
  • Refer to Create tokens via API for more information on creating API tokens through API.

2. Create the target table

You must have an existing D1 table which matches the schema of the data you wish to import.

This tutorial uses the following:

  • A database called d1-import-tutorial.
  • A table called TargetD1Table
  • Within TargetD1Table, three columns called id, text, and date_added.

To create the table, follow these steps:

  1. Go to Storage & Databases > D1.

  2. Select Create.

  3. Name your database. For this tutorial, name your D1 database d1-import-tutorial.

  4. (Optional) Provide a location hint. Location hint is an optional parameter you can provide to indicate your desired geographical location for your database. Refer to Provide a location hint for more information.

  5. Select Create.

  6. Go to Console, then paste the following SQL snippet. This creates a table named TargetD1Table.

    DROP TABLE IF EXISTS TargetD1Table;
    CREATE TABLE IF NOT EXISTS TargetD1Table (id INTEGER PRIMARY KEY, text TEXT, date_added TEXT);

    Alternatively, you can use the Wrangler CLI.

    Terminal window
    # Create a D1 database
    npx wrangler d1 create d1-import-tutorial
    # Create a D1 table
    npx wrangler d1 execute d1-import-tutorial --command="DROP TABLE IF EXISTS TargetD1Table; CREATE TABLE IF NOT EXISTS TargetD1Table (id INTEGER PRIMARY KEY, text TEXT, date_added TEXT);" --remote

3. Create an index.js file

  1. Create a new directory and initialize a new Node.js project.

    Terminal window
    mkdir d1-import-tutorial
    cd d1-import-tutorial
    npm init -y
  2. In this repository, create a new file called index.js. This file will contain the code which uses REST API to import your data to your D1 database.

  3. In your index.js file, define the following variables:

    • TARGET_TABLE: The target table name
    • ACCOUNT_ID: The account ID (you can find this in the Cloudflare dashboard > Workers & Pages)
    • DATABASE_ID: The D1 database ID (you can find this in the Cloudflare dashboard > Storage & Databases > D1 SQL Database > your database)
    • D1_API_KEY: The D1 API token generated in step 1
    index.js
    const TARGET_TABLE = " "; // for the tutorial, `TargetD1Table`
    const ACCOUNT_ID = " ";
    const DATABASE_ID = " ";
    const D1_API_KEY = " ";
    const D1_URL = `https://api.cloudflare.com/client/v4/accounts/${ACCOUNT_ID}/d1/database/${DATABASE_ID}/import`;
    const filename = crypto.randomUUID(); // create a random filename
    const uploadSize = 500;
    const headers = {
    "Content-Type": "application/json",
    Authorization: `Bearer ${D1_API_KEY}`,
    };

4. Generate example data (optional)

In practice, you may already have the data you wish to import to a D1 database.

This tutorial generates example data to demonstrate the import process.

  1. Install the @faker-js/faker module.

    Terminal window
    npm install @faker-js/faker
  2. Add the following code at the beginning of the index.js file. This code creates an array called data with 2500 (uploadSize) array elements, where each array element contains an object with id, text, and date_added. Each array element corresponds to a table row.

    index.js
    import crypto from "crypto";
    import { faker } from "@faker-js/faker";
    // Generate Fake data
    const data = Array.from({ length: uploadSize }, () => ({
    id: Math.floor(Math.random() * 1000000),
    text: faker.lorem.paragraph(),
    date_added: new Date().toISOString().slice(0, 19).replace("T", " "),
    }));

5. Generate the SQL command

  1. Create a function that will generate the SQL command to insert the data into the target table. This function uses the data array generated in the previous step.

    index.js
    function makeSqlInsert(data, tableName, skipCols = []) {
    const columns = Object.keys(data[0]).join(",");
    const values = data
    .map((row) => {
    return (
    "(" +
    Object.values(row)
    .map((val) => {
    if (skipCols.includes(val) || val === null || val === "") {
    return "NULL";
    }
    return `'${String(val).replace(/'/g, "").replace(/"/g, "'")}'`;
    })
    .join(",") +
    ")"
    );
    })
    .join(",");
    return `INSERT INTO ${tableName} (${columns}) VALUES ${values};`;
    }

6. Import the data to D1

The import process consists of four steps:

  1. Init upload: This step initializes the upload process. It sends the hash of the SQL command to the D1 API and receives an upload URL.
  2. Upload to R2: This step uploads the SQL command to the upload URL.
  3. Start ingestion: This step starts the ingestion process.
  4. Polling: This step polls the import process until it completes.
  1. Create a function called uploadToD1 which executes the four steps of the import process.

    index.js
    async function uploadToD1() {
    // 1. Init upload
    const hashStr = crypto.createHash("md5").update(sqlInsert).digest("hex");
    try {
    const initResponse = await fetch(D1_URL, {
    method: "POST",
    headers,
    body: JSON.stringify({
    action: "init",
    etag: hashStr,
    }),
    });
    const uploadData = await initResponse.json();
    const uploadUrl = uploadData.result.upload_url;
    const filename = uploadData.result.filename;
    // 2. Upload to R2
    const r2Response = await fetch(uploadUrl, {
    method: "PUT",
    body: sqlInsert,
    });
    const r2Etag = r2Response.headers.get("ETag").replace(/"/g, "");
    // Verify etag
    if (r2Etag !== hashStr) {
    throw new Error("ETag mismatch");
    }
    // 3. Start ingestion
    const ingestResponse = await fetch(D1_URL, {
    method: "POST",
    headers,
    body: JSON.stringify({
    action: "ingest",
    etag: hashStr,
    filename,
    }),
    });
    const ingestData = await ingestResponse.json();
    console.log("Ingestion Response:", ingestData);
    // 4. Polling
    await pollImport(ingestData.result.at_bookmark);
    return "Import completed successfully";
    } catch (e) {
    console.error("Error:", e);
    return "Import failed";
    }
    }

    In the above code:

    • An md5 hash of the SQL command is generated.
    • initResponse initializes the upload process and receives the upload URL.
    • r2Response uploads the SQL command to the upload URL.
    • Before starting ingestion, the ETag is verified.
    • ingestResponse starts the ingestion process.
    • pollImport polls the import process until it completes.
  2. Add the pollImport function to the index.js file.

    index.js
    async function pollImport(bookmark) {
    const payload = {
    action: "poll",
    current_bookmark: bookmark,
    };
    while (true) {
    const pollResponse = await fetch(D1_URL, {
    method: "POST",
    headers,
    body: JSON.stringify(payload),
    });
    const result = await pollResponse.json();
    console.log("Poll Response:", result.result);
    const { success, error } = result.result;
    if (
    success ||
    (!success && error === "Not currently importing anything.")
    ) {
    break;
    }
    await new Promise((resolve) => setTimeout(resolve, 1000));
    }
    }

    The code above does the following:

    • Sends a poll action to the D1 API.
    • Polls the import process until it completes.
  3. Finally, add the runImport function to the index.js file to run the import process.

    index.js
    async function runImport() {
    const result = await uploadToD1();
    console.log(result);
    }
    runImport();

7. Write the final code

In the previous steps, you have created functions to execute various processes involved in importing data into D1. The final code executes those functions to import the example data into the target D1 table.

  1. Copy the final code of your index.js file as shown below, with your variables defined at the top of the code.

    import crypto from "crypto";
    import { faker } from "@faker-js/faker";
    const TARGET_TABLE = "";
    const ACCOUNT_ID = "";
    const DATABASE_ID = "";
    const D1_API_KEY = "";
    const D1_URL = `https://api.cloudflare.com/client/v4/accounts/${ACCOUNT_ID}/d1/database/${DATABASE_ID}/import`;
    const uploadSize = 500;
    const headers = {
    "Content-Type": "application/json",
    Authorization: `Bearer ${D1_API_KEY}`,
    };
    // Generate Fake data
    const data = Array.from({ length: uploadSize }, () => ({
    id: Math.floor(Math.random() * 1000000),
    text: faker.lorem.paragraph(),
    date_added: new Date().toISOString().slice(0, 19).replace("T", " "),
    }));
    // Make SQL insert statements
    function makeSqlInsert(data, tableName, skipCols = []) {
    const columns = Object.keys(data[0]).join(",");
    const values = data
    .map((row) => {
    return (
    "(" +
    Object.values(row)
    .map((val) => {
    if (skipCols.includes(val) || val === null || val === "") {
    return "NULL";
    }
    return `'${String(val).replace(/'/g, "").replace(/"/g, "'")}'`;
    })
    .join(",") +
    ")"
    );
    })
    .join(",");
    return `INSERT INTO ${tableName} (${columns}) VALUES ${values};`;
    }
    const sqlInsert = makeSqlInsert(data, TARGET_TABLE);
    async function pollImport(bookmark) {
    const payload = {
    action: "poll",
    current_bookmark: bookmark,
    };
    while (true) {
    const pollResponse = await fetch(D1_URL, {
    method: "POST",
    headers,
    body: JSON.stringify(payload),
    });
    const result = await pollResponse.json();
    console.log("Poll Response:", result.result);
    const { success, error } = result.result;
    if (
    success ||
    (!success && error === "Not currently importing anything.")
    ) {
    break;
    }
    await new Promise((resolve) => setTimeout(resolve, 1000));
    }
    }
    // Upload to D1
    async function uploadToD1() {
    // 1. Init upload
    const hashStr = crypto.createHash("md5").update(sqlInsert).digest("hex");
    try {
    const initResponse = await fetch(D1_URL, {
    method: "POST",
    headers,
    body: JSON.stringify({
    action: "init",
    etag: hashStr,
    }),
    });
    const uploadData = await initResponse.json();
    const uploadUrl = uploadData.result.upload_url;
    const filename = uploadData.result.filename;
    // 2. Upload to R2
    const r2Response = await fetch(uploadUrl, {
    method: "PUT",
    body: sqlInsert,
    });
    const r2Etag = r2Response.headers.get("ETag").replace(/"/g, "");
    // Verify etag
    if (r2Etag !== hashStr) {
    throw new Error("ETag mismatch");
    }
    // 3. Start ingestion
    const ingestResponse = await fetch(D1_URL, {
    method: "POST",
    headers,
    body: JSON.stringify({
    action: "ingest",
    etag: hashStr,
    filename,
    }),
    });
    const ingestData = await ingestResponse.json();
    console.log("Ingestion Response:", ingestData);
    // 4. Polling
    await pollImport(ingestData.result.at_bookmark);
    return "Import completed successfully";
    } catch (e) {
    console.error("Error:", e);
    return "Import failed";
    }
    }
    async function runImport() {
    const result = await uploadToD1();
    console.log(result);
    }
    runImport();

8. Run the code

  1. Run your code.

    Terminal window
    node index.js

You will now see your target D1 table populated with the example data.

Summary

By completing this tutorial, you have

  1. Created an API token.
  2. Created a target database and table.
  3. Generated example data.
  4. Created SQL command for the example data.
  5. Imported your example data into the D1 target table using REST API.